
Title	Prediction of the uniaxial elongational viscosity of polydispers
11016	Polystyrene(PS) melt.
Researchers	Hiroyasu Tasaki, Jyun-ichi Takimoto and Masao Doi
Purpose of	Prediction of the uniaxial elongational viscosities of polymers.
this study	
System	$-PS(Mw = 2.85 \times 10^5, Mw/Mn = 2.0)$
(Material)	-PS + 1.5wt.% high molecular weight PS(HMW-PS, Mw = 3.2×10^6)
Program	PASTA
(including	(Smoothing and 2D-plottting programs)
analysis)	
Method	(Method)
& Some	Stochastic simulation based on the Slip-link model, which take account of the reptation, contour length fluctuation and constrain
important	renewal (constraint release or constraint creation).
input	
parameters	(Inputs)
	Molecular Weight : $Z = M / Me$
	(M : Molecular weight, Me : Entanglement molecular weight)
	Numbers of polymer : n *Some set of Z and n is available.
	MaxStretchRatio : Extended chain length / Equilibrium chain
	length (or 0 for Gauss chain)
Advance	(Advance)
&	- The strain hardening of elongational viscosities, which has stron
Problem	effect on the processability of polymer, is very sensitive to th existence of very high molecular weight components. Our simulatio
	method can predict the effects of molecular weight distribution an
	high molecular weight component on the strain hardenin
	quantitatively.
	(Problem)
	- Prediction of the rheological properties of polymers with extremel broad molecular weight distributions and branching structures
	such as pom-pom and comb.
References	[Manuscript] Submitted/Accepted(/)
	[Presentation at conferences (Meetings)]
	- 47 th Rheology tohronkai, p.263 (1999)
	- J. Takimoto, H. Tasaki and M. Doi, Proceeding of XIIIt
	International Congress on Rheology, Cambridge, UK, 2 , 97 (2000) - H. Tasaki, J. Takimoto, M. Doi, Proceeding of Materials Science for
	the 21st Century, Osaka, Japan, B , 15 (2001)
KeyWords	Rheology, slip-link model, entanglement, constraint release
(in English)	constraint renewal, contour length fluctuation, polystyrene,
(III LIIGIIDII)	elongational viscoelasticity, strain hardening, PASTA

lines represent the experiments and simulations, respectively

1.5wt.% HMW-PS