keshi Aoyagi, Jun-ichi Takimoto, Masao Doi h analysis of loop/bridge ratio of triblock copolymer in vario icrodomain structures. udy a relation between loop/bridge structure and macroscop operties. iblock copolymer i.e. Stylene-Isoprene-Stylene, Stylene-Butadiene-Stylene) OGNAC v3 JSHI 3 Tethod) Generate initial configuration based on the distribution of volum action of each segments obtained by SUSHI calculation wi nsity biased Monte Carlo method. The function of the mask conditions of SUSHI is used to constrate e one end segment of 0.1% chain in a domain. Then, loop/brid tio is calculated from the distribution of the other end segment. A Python script is used to analyze loop/bridge ratio of chain figuration of COGNAC. hputs) Polymer architecture (i.e. A3B24A3 triblock) χ parameter
keshi Aoyagi, Jun-ichi Takimoto, Masao Doi n analysis of loop/bridge ratio of triblock copolymer in vario icrodomain structures. udy a relation between loop/bridge structure and macrosco- operties. iblock copolymer i.e. Stylene-Isoprene-Stylene, Stylene-Butadiene-Stylene) DGNAC v3 JSHI 3 lethod) Generate initial configuration based on the distribution of voluc- action of each segments obtained by SUSHI calculation we nsity biased Monte Carlo method. The function of the mask conditions of SUSHI is used to constra- e one end segment of 0.1% chain in a domain. Then, loop/brid tio is calculated from the distribution of the other end segment. A Python script is used to analyze loop/bridge ratio of chain nfiguration of COGNAC. hputs) Polymer architecture (i.e. A3B24A3 triblock) χ parameter
n analysis of loop/bridge ratio of triblock copolymer in varie icrodomain structures. udy a relation between loop/bridge structure and macrosco- operties. iblock copolymer i.e. Stylene-Isoprene-Stylene, Stylene-Butadiene-Stylene) OGNAC v3 JSHI 3 Tethod) Generate initial configuration based on the distribution of volu- action of each segments obtained by SUSHI calculation w nsity biased Monte Carlo method. The function of the mask conditions of SUSHI is used to constra e one end segment of 0.1% chain in a domain. Then, loop/brid tio is calculated from the distribution of the other end segment. A Python script is used to analyze loop/bridge ratio of chan figuration of COGNAC.
icrodomain structures. udy a relation between loop/bridge structure and macroscopoperties. iblock copolymer i.e. Stylene-Isoprene-Stylene, Stylene-Butadiene-Stylene) OGNAC v3 JSHI 3 Tethod) Generate initial configuration based on the distribution of voluments action of each segments obtained by SUSHI calculation without the function of the mask conditions of SUSHI is used to construe e one end segment of 0.1% chain in a domain. Then, loop/bride tio is calculated from the distribution of the other end segment. A Python script is used to analyze loop/bridge ratio of chan nfiguration of COGNAC. hputs) Polymer architecture (i.e. A3B24A3 triblock) χ parameter
udy a relation between loop/bridge structure and macrosco operties. iblock copolymer i.e. Stylene-Isoprene-Stylene, Stylene-Butadiene-Stylene) OGNAC v3 JSHI 3 Tethod) Generate initial configuration based on the distribution of volu- action of each segments obtained by SUSHI calculation w nsity biased Monte Carlo method. The function of the mask conditions of SUSHI is used to constra- e one end segment of 0.1% chain in a domain. Then, loop/brid tio is calculated from the distribution of the other end segment. A Python script is used to analyze loop/bridge ratio of chan figuration of COGNAC.
operties. iblock copolymer i.e. Stylene-Isoprene-Stylene, Stylene-Butadiene-Stylene) OGNAC v3 JSHI 3 Tethod) Generate initial configuration based on the distribution of volu- action of each segments obtained by SUSHI calculation w nsity biased Monte Carlo method. The function of the mask conditions of SUSHI is used to constra- e one end segment of 0.1% chain in a domain. Then, loop/brid tio is calculated from the distribution of the other end segment. A Python script is used to analyze loop/bridge ratio of cha- nfiguration of COGNAC. nputs) Polymer architecture (i.e. A3B24A3 triblock) χ parameter
iblock copolymer i.e. Stylene-Isoprene-Stylene, Stylene-Butadiene-Stylene) OGNAC v3 JSHI 3 lethod) Generate initial configuration based on the distribution of volutation of each segments obtained by SUSHI calculation we nsity biased Monte Carlo method. The function of the mask conditions of SUSHI is used to constrate e one end segment of 0.1% chain in a domain. Then, loop/brid tio is calculated from the distribution of the other end segment. A Python script is used to analyze loop/bridge ratio of chan figuration of COGNAC.
i.e. Stylene-Isoprene-Stylene, Stylene-Butadiene-Stylene) OGNAC v3 JSHI 3 Tethod) Generate initial configuration based on the distribution of volutation of each segments obtained by SUSHI calculation we nsity biased Monte Carlo method. The function of the mask conditions of SUSHI is used to constrate one end segment of 0.1% chain in a domain. Then, loop/brid tio is calculated from the distribution of the other end segment. A Python script is used to analyze loop/bridge ratio of chan figuration of COGNAC.
DGNAC v3 JSHI 3 Tethod) Generate initial configuration based on the distribution of volu- action of each segments obtained by SUSHI calculation we nsity biased Monte Carlo method. The function of the mask conditions of SUSHI is used to constra- e one end segment of 0.1% chain in a domain. Then, loop/brid tio is calculated from the distribution of the other end segment. A Python script is used to analyze loop/bridge ratio of cha- nfiguration of COGNAC.
JSHI 3 JSHI 3 Lethod) Generate initial configuration based on the distribution of volu- action of each segments obtained by SUSHI calculation we nsity biased Monte Carlo method. The function of the mask conditions of SUSHI is used to constra- e one end segment of 0.1% chain in a domain. Then, loop/brid tio is calculated from the distribution of the other end segment. A Python script is used to analyze loop/bridge ratio of cha- nfiguration of COGNAC.
JSHI 3 Iethod) Generate initial configuration based on the distribution of volut action of each segments obtained by SUSHI calculation we nsity biased Monte Carlo method. The function of the mask conditions of SUSHI is used to constra- e one end segment of 0.1% chain in a domain. Then, loop/bric tio is calculated from the distribution of the other end segment. A Python script is used to analyze loop/bridge ratio of cha- nfiguration of COGNAC. hputs) Polymer architecture (i.e. A3B24A3 triblock) χ parameter
Iethod) Generate initial configuration based on the distribution of volu- action of each segments obtained by SUSHI calculation we nsity biased Monte Carlo method. The function of the mask conditions of SUSHI is used to constra- e one end segment of 0.1% chain in a domain. Then, loop/brid tio is calculated from the distribution of the other end segment. A Python script is used to analyze loop/bridge ratio of cha- nfiguration of COGNAC. hputs) Polymer architecture (i.e. A3B24A3 triblock) χ parameter
Iethod) Generate initial configuration based on the distribution of volu action of each segments obtained by SUSHI calculation w nsity biased Monte Carlo method. The function of the mask conditions of SUSHI is used to constra e one end segment of 0.1% chain in a domain. Then, loop/brid tio is calculated from the distribution of the other end segment. A Python script is used to analyze loop/bridge ratio of cha nfiguration of COGNAC. hputs) Polymer architecture (i.e. A3B24A3 triblock) χ parameter
Generate initial configuration based on the distribution of volu- action of each segments obtained by SUSHI calculation we nsity biased Monte Carlo method. The function of the mask conditions of SUSHI is used to constra- e one end segment of 0.1% chain in a domain. Then, loop/brid tio is calculated from the distribution of the other end segment. A Python script is used to analyze loop/bridge ratio of cha- nfiguration of COGNAC. hputs) Polymer architecture (i.e. A3B24A3 triblock) χ parameter
action of each segments obtained by SUSHI calculation we nsity biased Monte Carlo method. The function of the mask conditions of SUSHI is used to constra- e one end segment of 0.1% chain in a domain. Then, loop/brid tio is calculated from the distribution of the other end segment. A Python script is used to analyze loop/bridge ratio of cha- nfiguration of COGNAC. hputs) Polymer architecture (i.e. A3B24A3 triblock) χ parameter
nsity biased Monte Carlo method. The function of the mask conditions of SUSHI is used to constra e one end segment of 0.1% chain in a domain. Then, loop/brid tio is calculated from the distribution of the other end segment. A Python script is used to analyze loop/bridge ratio of chan figuration of COGNAC. hputs) Polymer architecture (i.e. A3B24A3 triblock) χ parameter
The function of the mask conditions of SUSHI is used to constra e one end segment of 0.1% chain in a domain. Then, loop/bric tio is calculated from the distribution of the other end segment. A Python script is used to analyze loop/bridge ratio of cha nfiguration of COGNAC. hputs) Polymer architecture (i.e. A3B24A3 triblock) χ parameter
e one end segment of 0.1% chain in a domain. Then, loop/brid tio is calculated from the distribution of the other end segment. A Python script is used to analyze loop/bridge ratio of chan figuration of COGNAC. hputs) Polymer architecture (i.e. A3B24A3 triblock) χ parameter
tio is calculated from the distribution of the other end segment. A Python script is used to analyze loop/bridge ratio of chanfiguration of COGNAC. nputs) Polymer architecture (i.e. A3B24A3 triblock) χ parameter
A Python script is used to analyze loop/bridge ratio of chan figuration of COGNAC. pputs) Polymer architecture (i.e. A3B24A3 triblock) χ parameter
nfiguration of COGNAC. nputs) Polymer architecture (i.e. A3B24A3 triblock) χ parameter
nputs) Polymer architecture (i.e. A3B24A3 triblock) χ parameter
nputs) Polymer architecture (i.e. A3B24A3 triblock) χ parameter
Polymer architecture (i.e. A3B24A3 triblock) χ parameter
χ parameter
dvance)
We developed an efficient method to generate an initial cha
nfiguration for MD from the distribution of volume fraction
gment.
Loop/bridge ratio in lamella morphology agrees with theoreti-
d experimental results.
Loop/bridge ratio is predicted in cylinder and bcc morphology.
uture work)
study of the relation between loop/bridge structure and propert
g. rubber elasticity) to predict an optimized chain structure.
recontation at conferences (Mostings)]
Jumor proprint Japan /0 (0) 2560 (2000)
nymer preprint Japan 43 (3), 2003 (2000)
area grained molecular dynamics, mean field calculation
arse gramed molecular dynamics, mean neu calculation,
ock copolymer, loop conformation, bridge conformation,
ock copolymer, loop conformation, bridge conformation, icrodomain

Results (Remarks)

Figure 1 shows the distribution of volume fraction of the end segment, which is constrained by the mask conditions of SUSHI in a cylinder morphology. The distribution of one end which is constrained in the center domain (Fig.1(a)) and the other end (Fig.1.(b)) are shown. Loop/bridge ratio is calculated from the volume fraction in the center domain (loop) and the other domains (bridge) in Fig.1(b). Figure 2 shows a snapshot structure of triblock copolymer in the cylinder domain.

Figure 1. Volume fraction of the end segments of ABA triblock copolymer in a cylinder morphology. (a) fixed end, (b)free end

Figure 2. Snapshot structure of ABA triblock copolymer in a cylinder morphology

Table 1-3 show bridge ration of triblock copolymer in lamella, cylinder and bcc morphology.

Table1 Bridge ratio in lamella morphology						
Polymer	χ	Lattice size/# of lamella l	lamella lengtl	h $\phi_{ m bridge}~(m SCF)$	ϕ_{bridge} (MD)	
A10B20A10	2.0	32/4	8.0	0.45	0.49	
A20B40A20	1.0	39/3	13.0	0.45	0.44	
A40B80A40	1.0	40/2	20.0	0.41	0.41	
Table2 Bridge ratio in cylinder morphology						
Polymer	χ	Volume fraction ϕ_A	lattice size	ϕ_{bridge} (SCF)	ϕ_{bridge} (MD)	
A5B40A5	1.5	0.20	8.0	0.63	0.65	
A6B28A6	1.25	0.30	9.0	0.63	0.65	
Table3 Bridge ratio in BCC morphology						
Polymer	χ	Volume fraction ϕ_A	lattice size	ϕ_{bridge} (SCF)	ϕ_{bridge} (MD)	
A3B54A3	3.0	0.10	11.0	0.76	0.77	
A5B40A5	1.0	0.20	10.0	0.78	0.81	
A6B28A6	0.75	0.30	8.5	0.80	0.83	