
Title	Molecular dynamics study of poly (ethylene oxide) (PEO) containing
	LiI salt
Researchers	F. Sawa, T. Aoyagi, T. Tatsuya, H. Fukunaga, J. Takimoto and Masao Doi
Purpose of	To get an insight into the transport mechanism of Li ion in PEO.
this study	Application: Li ion buttery
System	PEO and LiI salt.
(Material)	
Program	COGNAC v1.3
(including	
analysis)	
Method	(Method)
&	Molecular dynamics simulation modeled by united atom model wit
Some	empirical potentials. To calculate coulomb interaction, charges an
important	sited at non-bonding interaction sites as point charges.
input	
parameters	(Inputs)
	Degree of polymerization and number of molecule.
	Bonding interaction (bond, angle and torsion potentials were used and non-bonding interaction (OPLS).
	Temperature was set at 363K.
	Temperature was set at 5051X.
Advance	(Advance)
&	-It was observed that Li+ in PEO melts has two characterist
Problem	modes of motion.
	-It was also observed that Li+ and I- form ion cluster wit increasing salt concentration consistently with experiments.
	(Problem)
	-Tremendous additional calculation is required for quantitative valuation of diffusion coefficient deriving ionic conductivity.
References	[Manuscript]
References	Progress of Theoretical Physics Supplement No. 138 (2000) (Accepted)
	[Presentation at conferences (Meetings)]
	The 5th International Conference on Computational Physics
	(ICCP5 (1999))
	CMD18-European Physical Society (2000)
	Polymer Preprints Japan (2000)
KeyWords (in English)	MD, PEO, Li, LiI, conductivity, OPLS, ewald, united atom model

One example of Li+ motion in the system. (Degree of polymerization : 12) The circles indicate the index number of PEO molecule with which this Li+ forms a complex, and the cross symbols indicate the displacement of the Li+ per 1 ps.

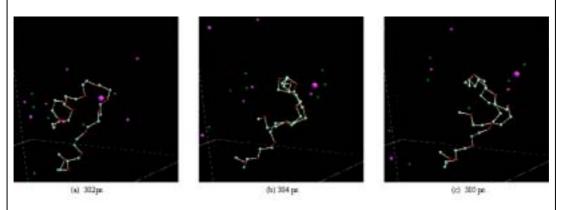


Fig.2)

The snapshots in each time step. The Li+ (reffered at Fig.1) is drawn as large balls for visual.

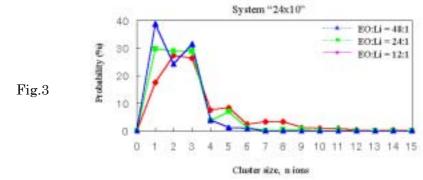


Fig.3)

Size distribution of the ionic cluster for various salt concentrations. The larger ion cluster (consists of Li+ and I-) was formed with increasing salt concentration (Degree of polymerization : 24).